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1 HIV Adjustment

Suppose we have m months with monthly hazards ,q;,7 =0, ..., m. We have,
Survival = H(l —14;)-
i=1
Taking logs:

m

log(Survival) Z log(1 — 4q;) Z 149
=0

Survival = exp ( Z 1%)
i=0

So

and
m

Death = ;q, =1 —exp <Z 1%) ~1-— [1 - Z 1%’1 = Z 19+
i=0 1=0

=0
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So if we have a multiplicative bias on all the hazards this will result (approximately) in the same
multiplicative bias on the USMR. The approximation is more accurate if the hazards are small. We now
show how we can add an offset to the logistic regression model on the hazard, in order to adjust for bias.
Let 5q, be true USMR and 5q the biased (unadjusted for HIV) USMR in a generic survey and year.
We have an estimate of
BIAS = 200 > 1.
590

We assume the bias acts the same on all age groups and model it through an offset for each hazard,

9; 19
log <1) = log <’N) + log(BIAS),
1 —q, 1—q, ( )

where ,q; and ,q;, are the corrected and uncorrected hazards, respectively for month ¢ = 1,2, ..., 60.
Under the assumption that each hazard is small, each logit is also small and

exp [ logit(,q;) + log(BIAS) |

i = = R~ logit(;q;) ] x BIAS ~ ;q. x BIAS
1% =y + exp [ logit(,q;) + log(BIAS) | exp [logit(,q;) ] 19 )

which means that the bias is acting the same on each hazard. Hence,

sdo & 1q; ~ BIAS x ) 1q, ~ BIAS x .,

i=1 i=1

and the log-offset in the logits for the hazards approximatively give a multiplicative bias correction of the
U5SMR.

2 Constructing a Space-Time Surface

Figure 1 shows the posterior median estimates of USMR and Figure 2 the corresponding standard
deviation. As indicated in Figure 8 of the main text, it can be seen that the drop in the central region
of Kenya is not as large as in the other regions, whereby the USMR estimates in 1980 are also smaller
compared to the non-central areas. The map of 2020 looks very flat. However, we would like to emphasize
that the color scale is misleading. The USMR values are by no means negligible and the corresponding
uncertainty is also high, as seen in Figure 2. This is also clearly indicated in the county level plot of the
main text.

Figure 3 shows maps of the posterior standard deviation for the spatio-temporal odds. The uncertainty
seems to decrease over time and increases again for the extrapolation to 2020. The uncertainty in the
central regions seems to be always smaller but looking at Figure 7 of the main text it can be seen that also
the estimates are much smaller.

Computing the weighted (directe) estimates involves fitting a separate GLM model (adjusting for the
survey design) for each combination of the 47 administrative regions and the seven periods of interest.
In this way it is not possible to borrow strength from the other time periods or regions. Figure 4 shows
that this leads to a much larger uncertainty in the direct estimates compared to our model estimates.
While we believe that our uncertainty estimates might be a little too narrow, the uncertainty of the direct
estimates seems very large. Regarding the point estimates, it can be seen that for the early periods the
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Figure 1. Maps of the posterior median estimates of USMR Top row: 1980, 1985, 1990. Middle row: 1995,
2000, 2005. Bottom row: 2010, 2015, 2020..

model estimates are much smaller for counties where the direct estimates are large. This phenomenon
slightly disappears over time. However, the model estimates seem to get larger for counties where the
direct estimates are small.

Evaluation of the spatio-temporal model was done by splitting the clusters in DHS2014 randomly into
397 clusters for training data and 1,187 clusters for testing data. The random splitting always has 1/4 of
the clusters of each stratum in the training data and 3/4 of the clusters in the test data when possible.
When this split is not possible the remaining clusters are divided randomly between the training data and
the test data, but the training data receives at most one of the additional clusters. The spatio-temporal
model was then fitted to the training data to produce model estimates of USMR for each county for each
S-year time period and the method of direct estimates were applied to produce direct estimates of USMR
for each county and for each 5-year time period. These are then compared to the “true” USMR obtained
by direct estimates from the test data for each county and period. Figure 5 shows that the model estimates
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Figure 2. Maps of the posterior standard deviation estimates of USMR Top row: 1980, 1985, 1990. Middle
row: 1995, 2000, 2005. Bottom row: 2010, 2015, 2020.

from the spatio-temporal model has less variation from the true values than the direct estimates and that
overall the spatio-temporal model performs better than the method of direct estimation for this test data.

The estimated baseline age-specific components of the logit of the hazard of each age groups is given
by an intercept and a temporal second-order random walk. The remaining components of the spatio-
temporal model are shared between the age groups and shift the pattern of the logit of the hazards, but
cannot change the pattern. Figure 6 shows how the estimated age-specific components of the discrete
hazard functions for under-five children in Kenya changes over time. The hazards of each age group has
changed with time, but the overall pattern of decreasing mortality over the age groups remains the same.

The national trend found by aggregating the pixel level predictions up to national level is shown in
Figure 7. The figure shows that the estimates are close to the B3 model (Alkema et al. 2014; Alkema and
New 2014) for earlier time periods, but that for later time periods the estimates are consistently lower.
This is expected as the B3 model also incorporates datasets with summary birth histories, which suggest
higher values in the later time periods than in the DHS datasets that we analyze. The national estimates
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Figure 3. Maps of the posterior standard deviation for the spatio-temporal odds surface, exp[ u(s, t) ]. Top row:
1980, 1985, 1990. Middle row: 1995, 2000, 2005. Bottom row: 2010, 2015, 2020. Top row: 1980, 1985, 1990.
Middle row: 1995, 2000, 2005. Bottom row: 2010, 2015, 2020.

from the spatio-temporal model fit well with the the direct estimates of national USMR from the different
DHS.
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Figure 4. Comparison of our model estimates (green) versus direct estimates (blue) on the logit scale for all
seven time periods. For both approaches 95% credible or confidence intervals are provided. Top row:
1980-1984, 1985-1989, 1990-1994, 1995-1999. Bottom row: 2000-2004, 2005-2009, 2010-2014.
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Figure 5. The “true” values obtained by direct estimates from the approximately 1200 hold-out clusters in
DHS2014 plotted against the model estimates (in green) and direct estimates (in blue) using data from
DHS2003, DHS2008/09 and the (approximately) 400 training clusters in DHS2014. From top left to bottom

center the figures are the comparisons for the time periods 1990-1994, 1995-1999, 2000-2004, 2005-2010
and 2010-2014.
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Figure 6. The estimated mean of the age-group-specific baseline of the logit of the discrete hazard function
for different years. This includes age-specific intercepts and second-order random walks.
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Figure 7. National estimates from DHS2014, DHS2009 and DHS2003 with and without HIV adjustment are
compared to our model estimates with 95% CI envelope and to the UNICEF estimates based on the B3 model.
The DHS with “mm” in the labels contain an adjustment for maternal mortality.
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3 Exploratory Covariate Modeling

The wealth index is a composite measure of many household indicators, and provides information on
household socioeconomic status, which is thought to be associated with health. Wealth indices were
computed for each household and survey using a set of variables that are commonly available across
different DHS. These wealth indices were then compared to the standard DHS wealth index (Rutstein
and Johnson 2004; Rutstein 2015) and found to be in good alignment. We used the derived version as
the basis for our modeling of the wealth index surface.We obtain a spatially-varying wealth index by
modeling the average wealth index at each cluster.

Let yk(sj) be the average household wealth index at cluster location s; in DHS £ (kK = 1, 2, 3) and
N (s;) be the number of households surveyed. We assume the model,

ys(85) | Bo, Se(s5), 0%, N(s;) ~ N (50 +5lsg), N(Z>) ’

where S(s;) is a spatial random effect with variance A% and range ¢. We take as the spatial model a
GRF with Matern covariance function, and use the SPDE method (Lindgren et al. 2011) to approximate
the field and fit the model. The resultant parameter estimates are in Table 1; we used the predicted mean
average household wealth index for each of the three DHS as the covariate surface.

Parameter 2003 Survey 2008 Survey 2014 Survey
Bo -1.33(-1.89,-0.880) -1.17 (-1.76,-0.68) -1.11 (-1.44,-0.81)
o2 45.8 (39.2, 53.6) 47.4 (39.9, 56.4) 31.9 (29.3, 34.7)
A2 1.48 (0.977, 2.25) 2.27 (1.52,3.41) 2.23(1.81,2.75)
1) 0.632 (0.360, 1.06)  0.705 (0.416, 1.16)  0.48 (0.374, 0.621)

Table 1. Parameter estimates (posterior medians) and 95% credible intervals (Cls) for the wealth index
surface model.

A description of the eight spatial covariates we considered in our model is provided in Table 2. Density
plots of the eight variables are presented in Figure 8. We note that there is not perfect alignment between
the frequency of the spatial covariates at the cluster locations and the overall distribution over Kenya.
This is not surprising given that the cluster locations are not uniformly dispersed.

We would like to take an exploratory associations between the logit of USMR and the covariates.
Since we are modeling at the point level, we would like to obtain logit USMR estimates at points, but
unfortunately these are rarely available from the raw data due toi the sparsity of deaths. Hence, we obtain
the predicted logit USMR using the model described in Section 3.1 of the paper. These predictions are
then plotted against the values of the covariates at grid locations throughout Kenya in Figure 9. We see
that PfPR appears to have the strongest (positive) association with USMR. Since many clusters in Kenya
are located in areas that are Pf free, we opted to break PfPR into two components. We included an
indicator term for Pf free and a second term of log transformed PfPR (this term was O for areas/clusters
that are Pf free).

As described in the paper, we divided the clusters into training and test datasets; the locations of these
clusters is in Figure 10. We fit the covariate models on the training set and assess model performance
using the DIC, WAIC, and CPO criteria. These values are shown in Figures 11 and 12 for models M3
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Variable

Years

Resolution

Source

Access: travel time in
minutes to nearest city
of 50,000 or more

Aridity: function of
precipitation
availability and
atmospheric water
demand
Temperature:
average daily
temperature in °C
Precipitation: total
annual precipitation in
mm

PfPR: Percent of 2-10
year olds infected by
Plasmodium
falciparum parasite
per year

Vegetation: Enhanced
vegetation index

Population

Wealth Index:
modeled wealth scores
based on the DHS
wealth index

2000

Mean value over
period
1950-2000

Mean value over
period
1970-2000
Mean value over
period
1970-2000
2000-2014

2000-2014

2000-2014

2003, 2008,
2014

30 arc seconds

30 arc seconds

30 arc seconds

30 arc seconds

150 arc seconds

1km

Skm

NA

Table 2. Potential covariates to be used in our model.

Joint Research Centre of the
European Commission
http://forobs. jrc.ec.
europa.eu/products/gam/
download.php

CGIAR-CSI http://www.
cgiar—-csi.org/data/

global-aridity—-and-pet—-database

WorldClim http://
worldclim.org/version2

WorldClim http://
worldclim.org/version?

Malaria Atlas Project http:
//Wwww.map.ox.ac.uk/

NASA EOSDIS Land Processes
DAAC
https://lpdaac.usgs.
gov/dataset_discovery/
modis/modis_products_
table/modl3a3_v006
WorldPop
http://www.worldpop.
org.uk/data/get_data/
NA

and My, respectively. As can be seen in these figures there is good agreement across all measures, with
models having lower scores being favorable. Both M3 and M, include PfPR; M3 also includes a term
for temperature and M, a term for precipitation.

We also compared the relationship between PfPR and the other two selected variables: temperature
(Figure 13) and precipitation (Figure 14). They are not particularly strongly related.
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Figure 8. Density plots of the covariates. Access, population, and PfPR were transformed to the log scale.
Solid lines indicate density of the covariates at the cluster locations. Dashed lines indicate the density of the
covariates evaluated on a grid over Kenya.

The posterior median and standard deviation of the predicted USMR surface for models M5, M3, and
My is shown in Figures 15 and 17, respectively. Corresponding versions on the log scale are provided
in Figure 16 and 18. Models M, and M, have the most visible similarities, and have a larger posterior
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Figure 9. Scatterplots of the logit USMR predictions versus the covariates, with a lowess smoother
superimposed.

standard deviation compared to M3. A log-transformed version of the regional estimates under the four
different models and the truth (test data) is in Figure 19.
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Figure 10. Cluster locations. All clusters in the 2003 and 2008 DHS and 785 clusters in the 2014 DHS were
used as training data to build the covariate models.
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Figure 11. DIC, CPO and WAIC values for 256 possible covariate combinations for the model not involving a
spatial random effect term. Colors indicate the number of covariates included in the model. The three “bands”
observed is based on whether temperature and/or PfPR were included in the model.
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Figure 12. DIC, CPO and WAIC values for 256 possible covariate combinations for the model involving a
spatial random effect term. Colors indicate the number of covariates included in the model. The best
performing model across all measures had precipitation and PfPR. The worst performing model had all
covariates except precipitation and malaria.
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Figure 13. Bivariate plots showing the relationship between PfPR and temperature for each period. In blue,
are the values at the cluster locations and black indicates the values over all of Kenya. Darker colors indicate

more values.
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Figure 15. Predicted USMR surface (posterior median) for Mz, M3, and Ma.
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Figure 16. Predicted USMR surface (posterior median) for M, Ms, and M4 on log scale.
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Figure 17. Posterior standard deviation for USMR surface for M2, M3, and Ma.
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Figure 18. Posterior standard deviation for USMR surface for M2, M3, and My on log scale.
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Figure 19. Regional predicted USMR on log scale. Top row is the “truth”, i.e., direct estimates based on the
799 holdout locations in the 2014 survey. Model M, are the direct estimates based on the other clusters.
Model M, is the spatial only model (no covariates). Model M3 is the covariates only model (temperature and
PfPR). Model My is the spatial and covariates model (precipitation and PfPR).

Prepared using sagej.cls



24 Journal Title XX(X)

We were also interested in whether and to what degree the coefficient values corresponding to the
covariates of interest change by adding (or removing) a spatial random effect. These values are in Table
3. There was not much change between models that did not include the spatial random effect term (non-
spatial) and models that did (spatial). Figure 20 visually depicts this; shown is the posterior median odds
ratio (OR) surface.

Model Temperature Malaria: Pf free Malaria: log PfPR
Non-spatial ~ 0.0630 (0.0413, 0.0845)  -0.192 (-0.490, 0.104) 0.186 (0.112, 0.259)
Spatial 0.0547 (0.0224, 0.0870)  -0.225(-0.584,0.136)  0.180 (0.0858, 0.272)

Precipitation Malaria: Pf free Malaria: log PfPR
Non-spatial ~ -0.261 (-0.419, -0.104)  -0.570 (-0.847,-0.295)  0.223 (0.150, 0.296)
Spatial -0.295 (-0.529, -0.0668)  -0.402 (-0.752, -0.0481)  0.190 (0.0935, 0.284)

Table 3. Posterior medians and 95% credible intervals (Cls) for coefficients corresponding to covariates in
different models. Non-spatial models refer to models that include the covariates, but not the spatial random
effect. Spatial models refer to models that include covariates and the spatial random effect. Precipitation has
been transformed to meters.

Figure 21 shows the predicted spatial random effect surface for Ms and M, and summaries of the
hyperparameters for the spatial random effect are in Table 4. There is not much difference between the
two.

Parameter Ms My
A (standard deviation) 0.441 (0.315, 0.630)  0.430 (0.305, 0.620)
¢ (range) 1.81 (0.949, 3.72) 1.80 (0.939, 3.88)

Table 4. Posterior medians and 95% credible intervals (Cls) for hyperparemeters of the spatial random effect
in M> and My.
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Non-spatial Spatial

Precipitation + PfPR

Temperature + PfPR

Figure 20. Surfaces depicting parameter estimates and how these values change with adding a spatial
random effect. Plotted are the posterior median ORs comparing to a reference group. In the temperature and
PfPR models, the reference group is the urban area of the Coast province, 20°C, and Pf free. In the
precipitation and PfPR models, the reference group is the urban area of the Coast province, 500 mm of
precipitation, and Pf free.
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Figure 21. Latent spatial surface for Models 2 and 4. The last column is the comparison of the two models.
For the posterior mean: spatial surface in Model 4 - spatial surface in Model 2. Thus, values greater than 0
indicate that the posterior mean of the spatial surface is higher under Model 4. For the posterior standard
deviation: spatial surface in Model 4 divided by the spatial surface in Model 2. Thus, values greater than 1
indicate that the posterior standard deviation is greater in Model 4.
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